
white paper

www.AdvantageDatabase.com

Getting Started:
Advantage Database Server
with Xbase++

By Roger Donnay*

*With Adsclass++ section written by Marcus Herz

x

TABLE OF CONTENTS
	 1 	 Introduction (written by Roger Donnay)
	 1 	 Installation
		 2	 Software Required
		 2	 Server vs Client Compatibility
		 2	 Using Advantage from Xbase++
		 3	 The ADSDBE
		 5	 Supported ISAM functions
		 5	 Database Concurrency
		 6	 ADSDBE Configuration
		 6	 ADS Wrappers
		 7	 Additional AX_*() functions
	 7	 Advantage Data Dictionaries
		 8	 Viewing the Tables in a Data Dictionary
	10	 Xbase++ and SQL
		 12	 SQL and the USE command
		 15	 The ExecuteSQL() and ApplySQLParams() functions
		 17	 Using ExecuteSQL() to Modify a Database structure
		 17	 Using ExecuteSQL() to change Account numbers
		 19	 Using ExecuteSQL() to add a new record to a database
		 20	 Using SQL files instead of Code	
	22	 Converting existing Xbase++ applications	
	23	 Sample Programs Available
	23	 AdsClass++ (written by Marcus Herz)
	29	 Additional Items
		 29	 The Advantage Architect
		 29	 Accessing Application Data from Third-Party Apps
	29	 Conclusion

1

Introduction
A little history is provided here because many Xbase++ programs were originally developed and compiled under

CA-Clipper, a DOS-based, 16-bit language. Advantage Database Server (ADS) provided the CA-Clipper community true
client/server technology due to its compatibility with Clipper/Xbase++ databases such as .DBF/.DBT/.NTX and .DBF/.
FPT/.CDX. Although Advantage Server includes robust support for SQL, no knowledge of SQL is required to enable
client/server technology in your Xbase++ applications. For years, many Xbase programmers had erroneously equated
“client/server” to SQL and assumed that they needed to move to a different platform to get this capability, this is not
required. SQL is a client/server technology that is “set-based”. Advantage supports SQL but also supports client/server
technology that is ISAM or “record-based”. Using SQL with the ADSBDE is covered later in this document.

Sybase developed a technology which allows Xbase++ programmers to get the advantages of client/server without
changing any of their legacy code or requiring a new database structure. In CA-Clipper, this was accomplished by
creating a new RDD named DBFNTXAX that was linked into the Clipper (Client) program by linking DBFAXS.LIB (RDD)
and AXSCOMM.LIB (communications layer). When USEing a file, it was opened with the DBFNTXAX driver. To the user
and application everything looks the same, but there is more activity being accomplished by the SERVER that would
normally be accomplished by the CLIENT (the Clipper program).

For example, an INDEX ON command would send a request to the server to create the index rather than creating
the index on the work station and writing the index back to the file server. This speeds up index creation and prevents
index corruption. In addition, all files are opened under 1 handle therefore you never get a DOS ERROR 4 (out of file
handles). Because ADS does much of its work on the SERVER there is reduced network traffic thereby improving
performance on heavily used networks.

As Advantage Database Server technology became more popular over the years and more and more CA-Clipper
programmers were converting their applications to VO, VB and Delphi, Sybase created a 32-bit client system that
works with the same server software that was such a workhorse for CA-Clipper. This consists of two dlls ACE32.
DLL (Advantage Client Engine, 32-bit) and AXCWS32.DLL (Communications Layer, 32-bit). This same set of client
and communications .DLLs are used with all 32-bit languages, including Xbase++. The ACE32.DLL contains a client
API which was used by Alaska Software to develop the ADSDBE. The ADSDBE is a database engine (DBE) that
communicates with the ACE32.DLL. This is unlike other DBE’s such as DBFNTX and DBFCDX which access databases
directly. The ADSDBE accesses databases by making calls to functions in the ACE32.DLL. To you, the programmer, this
is all transparent because your code does not need to change. Your USE, SKIP, GO TOP, SEEK, INDEX etc. commands and
dbUseArea(), dbSkip(), dbGoTop(), dbSeek(), OrdSetFocus(), etc. functions behave as they did before.

Installation
The server software can be installed on Windows operating systems (XP and above), Linux operating systems

(Kernel 2.4 and above) and Netware (5 and above). For best performance the Advantage Database Server should exist
on the same server that is also the file server for all the databases. If the server is not running, an error will occur
when trying to load the ADSDBE with the DbeLoad() function.

Another alternative for developers is to download the free ADSLOC32.DLL from the Advantage Developer Zone
(DevZone.AdvantageDatabase.com) website. This is referred to as “Advantage Local Server” and is included with every
client kit, for example the Advantage Client Engine API. It emulates the server software that is normally installed on
the file server and allows you to run applications that use ADSDBE on a local drive. This is great for development when
you are not attached to a network such as when you are travelling with a notebook computer.

 Advantage extends the capabilities of Xbase++ with features like transaction processing, data encryption, SQL,
scoping, filter optimization, etc. You can get access to these extended features by using the wrapper functions that
start with ADS*() or AX_*() in ADS.PRG. Once you commit to using these extended functions then your application can
no longer run without the ADSDBE and/or ACE32.DLL, this is why the ADSLOC32.DLL is a valuable tool for developers
who need to continue development when they do not have access to a remote server.

1

2

Xbase++ and Advantage Database Server work very well together on Windows or Novell networks and they do not
require IPX protocol as was necessary for CA-Clipper. They are designed to use either the IPX or IP protocol, therefore,
they are quite compatible with wide-area networks. Because Advantage uses record-based databases (ie DBF/NTX)
it is not recommended that you connect your client to your data over the Internet if your application requires a lot
of browsing. If however, your application is designed to access only one record at a time, this can be a good Internet
solution. It requires that you use the Internet connection type since it provides a secure connection between the client
and the remote server. There are many Advantage Database applications, written in a variety of languages, that use
the Internet client to attach to a remote database and they are quite impressive, however these applications were
written entirely from scratch and were not migrated applications. They take into consideration the relatively low
bandwidth of the Internet in the concept of the design and refrain from heavy use of browsing.

Software Required
Available from Alaska Software, Inc.

Xbase++ version 1.7 or later for simple database usage.•	
Xbase++ version 1.9 or later for advanced features like SQL queries.•	
ADSDBE for Xbase++.•	

Available from Sybase, Inc. (DevZone.AdvantageDatabase.com)
Advantage Client Engine which includes ACE32.DLL, AXWCS32.DLL and ADSLOC32.DLL•	

Server vs Client Compatibility
Generally the version of the Advantage client must be the same or older than the Advantage Database Server.

When using older client DLLs new features introduced with the version of the ADS higher than the Client are not
available. Sybase recommends that you use the same version of both the client and server for best performance and
compatibility.

The ADSDBE installation includes versions of the Advantage client DLLs that probably will not match the most
current version of Advantage server, therefore, it is necessary to always install the client DLLs matching the version of
the Advantage Database Server. Also updating the client DLL at all Xbase++ application deployment sites is strongly
recommend when updating the Advantage Database Server to a higher version.

Using Advantage from Xbase++
The below diagram shows how the Xbase++ program connects to legacy .DBF databases. The simplest method is

to use the ADSDBE because it requires the fewest changes to legacy code, however it is also possible to manage data
via a set of ADS wrappers which bypass the database engine and talk directly to the ACE client engine via direct DLL
calls. When deploying applications, it is suggested that the Advantage Server software be installed on a remote server
which is available to all Xbase++ client programs via a local area network. This is the best performance model for
client/server applications. During testing, however, the ADSLOC32.DLL may be used to “emulate” the remote server or
even to replace the remote server in installations where some users of the application may not need full client/server
capability but the developer wishes to manage development costs by providing a single application binary that will
work in all environments.

2

3

The ADSDBE
The ADSDBE is provided by Alaska Software1. It includes a help file that provides good documentation to aid in

understanding client/server concepts and the Database Engine Overview.

The ADSDBE is the simplest method for developing or migrating Xbase++ applications with Advantage Database
Server because it does not require knowing anything about the Advantage Client Engine (ACE) or its functions. It only
requires small modifications to the code.

The ADSDBE is basically used like any other Xbase++ Database Engine (DBE). It must be loaded with the DbeLoad()
function and can be defined with DbeSetDefault() as the default DBE. Once the ADSDBE is loaded, all commands and
functions of the DML (Data Manipulation Language) are directed via the ADSDBE to the ADS and executed on the
server station. The result of a DML command is then returned to the Xbase++ application, or client station.

Although the ADSDBE usage is quite similar to other Xbase++ DBEs, there are some differences which must
be taken into account. The basic difference is that the ADSDBE consists of a data component, built in order
component, dictionary component, and session component. Therefore, there is no need to use DbeBuild() to build a
DatabaseEngine with order/index management capabilities.

Procedure DbeSys is used in this example, just as in any Xbase++ application, to load the required DBE. The ADSDBE
allows access to files via a database server (ADS) which runs on a remote site. This requires the client station to
establish a connection to the server before any file can be used. This is accomplished by the DacSession() class
whose objects have the functionality to build a server connection and maintain a session while the client station is
connected.

It is also a good idea to disconnect ADS from the client program before quitting the application. This should be
done in an EXIT PROCEDURE as shown below to insure that the connection is broken even in the event of a runtime
error.

3

1 Alaska Software, Inc. – www.alaska-software.com

4

PROCEDURE DbeSys

 IF ! DbeLoad(“ADSDBE”)

 Alert(“Unable to load ADSDBE”, {“Ok”})

 ENDIF

 DbeSetDefault(“ADSDBE”)

 RETURN

PROCEDURE Main

 LOCAL cConnect := “DBE=ADSDBE;SERVER=\\ALASKA\VOL1”

 // store to public variable for use in other threads

 PUBLIC poAdsSession := DacSession():New(cConnect)

 IF .NOT. M->poAdsSession:isConnected()

 Alert(“Unable to establish connection to ADS”, {“Quit”})

 QUIT

 ENDIF

 StartUpProgram()

 RETURN

EXIT PROCEDURE DisconnectSession()

 M->poSession:disconnect()

 RETURN

The only difference in using the ADSDBE compared to the DBFNTX DBE, is that the ADSDBE requires the DacSession
object to establish a connection to the ADS and to disconnect from the server. The code for database and index
handling, or data manipulation, is the same.

In Xbase++ multi-threaded applications it is necessary to take the following precaution to prevent a runtime error.
When a new thread is started, the :setDefault() method of the DacSession() object must be called before opening any
databases, therefore, it is a good idea to store a pointer to the DacSession() object to a public variable as shown above.
Also, make sure to close all databases before terminating a thread.

Example:
FUNCTION RunInNewThread(bBlock)

 M->poAdsSession:setDefault()

 Eval(bBlock)

 dbCommitAll()

 dbCloseAll()

 RETURN nil

5

It is important to note that very little application code needs to be changed when converting an application to
using the ADSDBE. Basically, the ADSDBE must be loaded at the start of the application, and a DacSession() must
be created to connect the ADSDBE to Advantage Server. File and index opening routines do not need to be touched.
Multi-threaded applications also require a small modification at the start of each thread to insure that the work area
inherits the DacSession() object, but that’s all there is to it.

Supported ISAM functions
Before starting a migration project, it is important to understand that the 32-bit version of Advantage has some

limitations over the 16-bit Clipper version, mostly in the way index keys are handled.

Advantage Database Server imposes some limitations on database and index file handling which do not exist in
Xbase++. However, if an Xbase++ application uses the ADSDBE and instructs the ADS to create files on the server, the
limitations must receive attention.

When a database command or function includes an expression that must be evaluated by the ADS, only a limited
number of functions can be used in the expression. This applies to index creation, filters, relations and all database
commands supporting a FOR clause. The following table list all supported functions2:

AllTrim()	 IIf()	 Round()	 At()	 Left()	 RTrim()
Chr()	 Len()	 Space()	 CtoD()	 Lower()	 Str()
Date()	 LTrim()	 StrZero()	 Day()	 Month()	 SubStr()
Deleted()	 Pad()	 Time()	 Descend()	 PadC()	 Today()*
DtoC()	 PadL()	 Transform()	 DtoS()	 PadR()	 Trim()
Empty()	 Rat()	 Upper()	 I2Bin()	 Recno()	 Val()
If()	 Right()	 Year()
 * Use Date() in Xbase++

The ADS expression engine cannot evaluate expressions containing other Xbase++ functions or user-defined
functions. Also, only field variables or literal constants may be included in an expression evaluated on the server side
of an application. If the ADS expression engine cannot evaluate an expression, a runtime error is raised. An exception
is the definition of a filter expression. If a filter is used that cannot be evaluated by the Advantage Database Server, it
will be evaluated locally on the client machine by the ADSDBE.

The above limitations are not considered problematic when designing new Xbase++ applications that use ADS
because there are other design concepts that can be utilized that are often more efficient and more sustainable
than using filters or user-defined functions, however they can cause some consternation when migrating existing
applications. The functions supported by ADS can handle most requirements of an index. If your legacy indexes use
functions not supported by ADS, you will probably find that there is an equivalent function or expression that will
suffice as a replacement.

Database Concurrency
Advantage allows and manages “concurrent” database access by more than one application. In many of the legacy

Xbase applications that are converted to Advantage, it is a requirement during the development and testing stages
that the Xbase++ program which is accessing the databases via Advantage Database Server also work concurrently
with old legacy Clipper programs that are accessing the same “shared” databases directly. This is a huge benefit
to avoid deploying the new xbase++ application in a “big bang” to users, which often times leads to an excessive
amount of support issues. Deploying the new application a little at a time allows for natural migration without
user productivity dropping to learn a new application all at once. Concurrent access, is possible by making a simple

5

2 See “Advantage Expression Engine” in the help file for the most current list of supported expression engine functions.

6

function call to AX_AXSlocking() to enable a compatible locking mode for shared use. This is a huge benefit,although
this is possible, it is not recommended in the long term because it defeats the main purpose for using Advantage in
the first place which is to increase performance and reliability. If old legacy programs are still accessing the databases
directly, they can still cause file corruption. You achieve the maximum benefit from Advantage by enabling the
proprietary locking scheme with a simple function call to AX_AXSLocking(.T.).

ADSDBE Configuration
The Xbase++ function DbeInfo() is used to retrieve and/or configure the current DatabaseEngine set with

DbeSetDefault() . For example, the file extension for database files can be specified, or the locking scheme can be set.
The most important settings when getting started with ADSDBE are the “Table Mode” and “Locking Scheme”.

The table mode can be NTX, CDX or ADT. Legacy applications will most likely use index files with either the NTX or
CDX extension, so DbeInfo() would be used as follows:
#include ADSDBE.CH

DbeSetDefault(‘ADSDBE’)

DbeInfo(COMPONENT_DATA , ADSDBE_TBL_MODE, ADSDBE_NTX)

DbeInfo(COMPONENT_ORDER, ADSDBE_TBL_MODE, ADSDBE_NTX)

or

DbeInfo(COMPONENT_DATA , ADSDBE_TBL_MODE, ADSDBE_CDX)

DbeInfo(COMPONENT_ORDER, ADSDBE_TBL_MODE, ADSDBE_CDX)

The locking scheme can be set with AX_AXSLocking() or with DbeInfo() as follows:
DbeInfo(COMPONENT_DATA, ADSDBE_LOCK_MODE, ADSDBE_COMPATIBLE_LOCKING)

or

DbeInfo(COMPONENT_DATA, ADSDBE_LOCK_MODE, ADSDBE_PROPRIETARY_LOCKING)

Additional configuration settings are also available with DbeInfo() such as the Index Extension, Memo File
Extension, Memo Block Size, etc. See the ADSDBE help file from Alaska Software for more information.

ADS Wrappers
The full set of ADS*() functions included in ACE32.DLL can be called from within the Xbase++ program by creating a

set of wrappers that use the DLLFUNCTION command of Xbase++. These functions are mostly not needed unless it is
necessary to use features of Advantage which are not supported by the ADSDBE, such as data dictionary manipulation,
SQL statement creation, or ADS Management.

Examples:
#include “DLL.CH”

DLLFUNCTION AdsSeek(nIndex, @cKey, cLength, nDataType, nSeekType, @lFound)

DLLFUNCTION AdsSetScope(nIndex, nScopeOption, cScope, nScopeLen, nDataType)

DLLFUNCTION AdsSkip(nTableHandle, nRecords)

Note: For faster performance, particularly when using functions in a loop, it is suggested that the ACEFUNCTION
 command be used in place of DLLFUNCTION. This keeps the ACE32.DLL always loaded.

77

#command ACEFUNCTION <Func>([<x,...>]) ;

 => ;

FUNCTION <Func>([<x>]);;

STATIC scHCall ;;

IF scHCall == nil ;;

 IF snHdll == nil ;;

 snHDll := DllLoad(‘ACE32.DLL’) ;;

 ENDIF ;;

 scHCall := DllPrepareCall(snHDll,DLL_STDCALL,<(Func)>) ;;

ENDIF ;;

RETURN DllExecuteCall(scHCall,<x>)

ACEFUNCTION AdsSeek(nIndex, @cKey, cLength, nDataType, nSeekType, @lFound)

ACEFUNCTION AdsSetScope(nIndex, nScopeOption, cScope, nScopeLen, nDataType)

ACEFUNCTION AdsSkip(nTableHandle, nRecords)

A full set of Ads wrappers is available in a file named ADS.PRG. This file also contains a set of AX_*() functions for
migration from CA-Clipper and a set of miscellaneous functions to make it easier to use ADS with Xbase++.

Additional AX_*() functions
The ADSDBE also includes a set of functions which may be called in your Xbase++ application that will utilize

additional features of ADS.
AX_AXSLocking() - Sets record locking mode•	
AX_DBFEncrypt() - Encrypts an entire database•	
AX_DBFDecrypt() - Decrypts an entire database•	
AX_Encrypt() - Encrypts a string•	
AX_Decrypt() - Decrypts a string•	
AX_IDType() - Determine if current record is encrypted•	
AX_RightsCheck() - Get or set security method to open files•	
AX_SetPass() - Set password for encryption / decryption•	
AX_TableType() - Determines with current database in encrypted•	

Advantage Data Dictionaries

A data dictionary is the key to opening up an Xbase++ application to other applications and for providing SQL in the
simplest possible form to Xbase++ programmers.

1. It combines the Xbase++ Work Area concept with the SQL SELECT statement.
2. It encapsulates the data and indexes of an application to improve performance when using SQL operations.
3. It provides a means for other applications, written in any language, i.e. ASP.NET, to access the Xbase++ application 	

	 data via SQL statements.
4. It opens the application for use with third-party reporting tools such as Crystal Reports.
5. It provides an interface, via the ADS ODBC driver, to Microsoft applications such as Excel.

An Advantage data dictionary is simply a file that contains information about every database and index table in
an application. The data dictionary can be created using the Advantage Architect (ARC32.EXE) or in Xbase++ code as
follows:
cDictName := ‘ABC.ADD’

cDictDesc := ‘My Test Application’

nError := AdsDDCreate(cDictName, .F., cDictDesc), @nHandle)

IF nError == 0

8

 nError := AdsConnect60(cDictName, ;

 ADS_REMOTE_SERVER + ADS_LOCAL_SERVER, ;

 ‘AdsSys’, ;

 ‘’, ;

 ADS_DEFAULT, ;

 @nHandle)

 IF nError == 0

 aDirectory := Directory(‘*.DBF’)

 FOR i := 1 TO Len(aDirectory)

 cTableName := Strtran(Upper(aDirectory[i,1]),’.DBF’,’’)

 nError := AdsDDAddTable(nHandle, cTableName, cTableName+’.DBF’, ;

 ADS_CDX, ADS_OEM, ‘’, ‘’)

 NEXT

 ENDIF

ENDIF

The data dictionary is key to getting the most from Advantage SQL and the ADSDBE because dbUseArea() currently
will not work with DacSession() objects that are FREE connections.

The above code example demonstrates creation of a data dictionary that references DBF/CDX databases. A data
dictionary can also contain references to DBF/NTX databases however, there is a bit more code necessary to add the
NTX files to the dictionary and associate them with the correct DBF files. For simplicity, the examples in this session
will use DBF/CDX databases.

Viewing the Tables in a Data Dictionary
Having a browse or a tree-view of the tables in a data-dictionary is very convenient to both the application user

and the programmer. If you do not want to give your users access to the data-dictionary via Advantage Architect, then
here is a routine that will display all the tables in a tree-view and allow the user to double-click the item to browse
the table. Simply substitute your own GUI browse for the Browse() function. You may also add your own security to
prevent editing or viewing without proper permissions.

FUNCTION TableTree()

LOCAL aTables, nDictHandle, GetList[0], GetOptions, oDlg, oTree, ;

 nEvent, mp1, mp2, oXbp

nDictHandle := AdsSession():getConnectionHandle()

aTables := _BuildObjectArray(ADS_DD_TABLE_OBJECT, nDictHandle, .t.)

ASort(aTables,,,{|a,b|a[1]<b[1]})

oDlg := XbpDialog():new(AppDeskTop(),,{0,0},{400,600}):create()

oTree := XbpTreeView():new(oDlg:drawingArea,,{0,0},oDlg:drawingArea:currentSize())

oTree:haslines := .t.

oTree:hasButtons := .t.

oTree:alwaysShowSelection := .t.

oTree:setFontCompoundName(‘9.Lucida Console’)

oTree:itemSelected := {|a,b,o|_TableBrowse(o)}

oTree:create()

9

_BuildTree(oTree,aTables)

nEvent := 0

DO WHILE nEvent # xbeP_Close

 nEvent := AppEvent(@mp1,@mp2,@oXbp,1)

 IF nEvent > 0 .AND. Valtype(oXbp) == ‘O’

 oXbp:handleEvent(nEvent,mp1,mp2)

 ENDIF

ENDDO

RETURN nil

* --------------

STATIC FUNCTION _TableBrowse(oTree)

LOCAL cTableName

cTableName := Substr(oTree:getData():caption,1,10)

USE (cTableName)

DC_CrtRun({||Browse()})

RETURN nil

* --------------

STATIC FUNCTION _BuildTree(oTree, aTables)

LOCAL i, cString, oItem

FOR i := 1 TO Len(aTables)

 cString := Pad(aTables[i,1],10) + ‘ : ‘ + Alltrim(aTables[i,2])

 oItem := oTree:rootItem:addItem(cString)

 oItem:cargo := aTables[i,1]

NEXT

RETURN nil

* --------------

STATIC FUNCTION _TableDesc(cTableName, nDictHandle)

LOCAL nProperty, xValue, nLen, nError

nProperty := ADS_DD_COMMENT

xValue := Space(200)

nLen := 200

nError := AdsDDGetTableProperty(nDictHandle, ;

 cTableName, ;

10

 nProperty, ;

 @xValue, ;

 @nLen)

RETURN Alltrim(xValue)

* --------------

STATIC FUNCTION _BuildObjectArray(nObject, nDictHandle)

LOCAL i, cData, nLen, nHandle, nError, aObject[0]

cData := Space(ADS_DD_MAX_OBJECT_NAME_LEN)

nLen := ADS_DD_MAX_OBJECT_NAME_LEN

nHandle := 0

nError := AdsDDFindFirstObject(nDictHandle, ;

 nObject, ;

 ‘’, ;

 @cData, ;

 @nLen, ;

 @nHandle)

IF nError == 0

 cData := Strtran(cData,Chr(0),’’)

 AAdd(aObject, {Alltrim(cData),_TableDesc(Alltrim(cData),nDictHandle)})

ENDIF

DO WHILE nError == 0 .AND. nHandle > 0

 cData := Space(ADS_DD_MAX_OBJECT_NAME_LEN)

 nLen := ADS_DD_MAX_OBJECT_NAME_LEN

 nError := AdsDDFindNextObject(nDictHandle, ;

 nHandle, ;

 @cData, ;

 @nLen)

 IF nError == 0 .AND. !Empty(cData)

 cData := Alltrim(Strtran(cData,Chr(0),’’))

 AAdd(aObject, { Alltrim(cData), _TableDesc(Alltrim(cData),nDictHandle)})

 ENDIF

ENDDO

AdsDDFindClose(nHandle)

RETURN aObject

Xbase++ and SQL
Advantage includes a SQL system that can be used to manipulate ISAM (Foxpro and Clipper DBF) databases using

standard SQL techniques. This powerful feature of Advantage Server was mainly responsible for opening up the
Advantage product line to a new world of possibilities.

11

It is well known that, over the years, SQL databases have become the choice of developers for industrial strength
applications. This is mostly due to the fact that popular SQL databases are also client/server databases and the client/
server model affords the advantages of security, performance and low risk of corruption. SQL was not an option in the
early days of Advantage server because the language concept of SQL was mostly incompatible with ISAM databases
and Xbase language programmers became quite skilled at managing their data via techniques available in the Xbase
language. SQL is also a very different approach to data access than ISAM because it deals in data sets rather than
providing the capability of browsing an entire database. Many Xbase developers found this to be a very limiting
factor in the design of an application and were convinced that their customers would reject a redesign that took
away the power and performance that made Xbase applications desirable. With the development of more powerful
ISAM indexing techniques, scoping, and browse navigation methods, Xbase++ applications proved to be much better
performers than SQL-based applications when browsing data.

On the other hand, SQL provides a much simpler programming interface for complex data operations such as
queries and updates. It is also extremely fast at providing small datasets as opposed to the common “filtering”
technique. It works well across multiple tables, provides a robust set of options and functions, does not require
opening of databases and indexes, and does not require record locking. It is nearly impossible to corrupt data tables
when using SQL.

As bridges started to be built between the Xbase world and the SQL world, Xbase and Delphi programmers found
that a hybrid world was a much better place in which to live. The developers at Sybase found an opportunity to give
our community of programmers the best of both worlds by developing both an ISAM and SQL Engine within ADS.

To understand how to use Advantage SQL with Xbase++, it must be understood that ADSDBE accepts cursor
handles with the DbUseArea() function. What this means is that you can now browse or otherwise manipulate data
without changing your code or coding technique.

 Here is a simple example:
oSession - A pointer to the AdsSession created by DacSession()

nCursor - A pointer to the SQL Cursor created by AdsExecuteSQLDirect().

DbUseArea(nil, oSession, ‘<CURSOR>’ + L2Bin(nCursor) + ‘</CURSOR’)

Browse()

In order to use this new feature, you must first connect to an Advantage Data Dictionary. This is accomplished in
the same way that you would normally make an ADSDBE connection except that you pass the name of the dictionary
file in the connect string rather than the drive letter.

DbeSetDefault(“ADSDBE”)

cDictServer := Curpath() + ‘\XWOLF.ADD’

cSession := “DBE=ADSDBE;SERVER=” + cDictServer

oSession := DacSession():new(cSession)

Creating a workarea in this manner combines the best of the ISAM and SQL worlds by allowing existing indexes to
be used with a SQL dataset, thereby allowing OrdSetFocus() to instantly change the order of records in the dataset.

12

SQL and the USE command
SQLUse() is a function that uses the AdsStatement() class to create a SQL cursor from a statement and then applies

it to a work area.

Creating a SQL statement is accomplished by using the TEXT INTO command of Xbase++. This allows for SQL
statements to appear as inline code in an Xbase++ program.

AdsStatement:init() is used to create an instance of the AdsStatement() class. It receives the SQLStatement as a
parameter and then calls the AdsStatement:open() method. The open() method uses ADS API functions to verify that
the SQL statement is valid and has no syntax errors. The AdsStatement:execute() method uses ADS API functions
to convert the statement to a cursor handle which is then used by the Xbase++ dbUseArea() function to apply the
SELECT statement to a work area.

The work area can then be navigated using standard Xbase++ navigation functions.

Example:
FUNCTION Test

LOCAL oStatement, cStatement

TEXT INTO cStatement WRAP

SELECT

invoice.invnmbr,

invoice.balance,

customer.custnmbr,

customer.billname,

customer.billstrt,

customer.billcity,

FROM customer, invoice

WHERE invoice.custnmbr = customer.custnmbr

ENDTEXT

oStatement := SQLUse(cStatement, ‘INVOICES’)

Browse()

oStatement:close()

RETURN nil

*-----------

FUNCTION SQLUse(cStatement, cAlias)

LOCAL oStatement

oStatement := AdsStatement():New(cStatement,AdsSession())

IF oStatement:LastError > 0

 RETURN .f.

13

ENDIF

oStatement:Execute(cAlias)

RETURN oStatement

* ---------

CLASS AdsStatement

EXPORTED:

VAR Handle, Statement, Alias, Session, Cursor, LastError

INLINE METHOD GetLastError()

RETURN(::LastError)

* -------------

INLINE METHOD Init(cStatement, oSession)

IF(ValType(oSession)!=”O”)

 MsgBox(‘Parameter Type error : oSession’ + Chr(13) + ;

 ‘(passed to AdsStatement:Init())’)

 ::LastError := 3

 RETURN Self

ENDIF

IF(!oSession:IsDerivedFrom(“DacSession”))

 MsgBox(‘Parameter passed is not a DacSession : oSession’ + chr(13) + ;

 ‘(passed to AdsStatement:Init())’)

 ::LastError := 4

 RETURN Self

ENDIF

::Session := oSession

RETURN ::Open(cStatement)

* ------------

INLINE METHOD Close()

IF(::HANDLE==NIL)

 RETURN(.F.)

ENDIF

IF (Used(::Alias))

 (::Alias)->(DbCloseArea())

ENDIF

::LastError := AdsCloseSQLStatement(::HANDLE)

14

::Statement := NIL

::HANDLE := NIL

::Alias := NIL

RETURN .t.

* -------------

INLINE METHOD Open(cStatement)

LOCAL nH, nError, nErrorLen, cErrorString

IF ValType(cStatement)!=”C”

 MsgBox(‘Parameter Type Invalid : Statement’ + Chr(13) + ;

 ‘(passed to AdsStatement:Open())’)

 ::LastError := 1

 RETURN self

ENDIF

IF(Upper(Left(cStatement,Len(KEYWORD_SELECT)))!=KEYWORD_SELECT)

 MsgBox(‘Unsupported SQL statement’ + Chr(13) + ;

 ‘(passed to AdsStatement:Open())’)

 ::LastError := 2

 RETURN self

ENDIF

::Statement := cStatement

nH := 0x0

::LastError := AdsCreateSQLStatement(::Session:getConnectionHandle(), @nH)

::HANDLE := nH

IF ::LastError > 0

 cErrorString := _AdsGetLastError()

 MsgBox(cErrorString)

ELSE

 ::LastError := AdsVerifySQL(nH, cStatement)

 IF ::LastError > 0

 cErrorString := _AdsGetLastError()

 MsgBox(cErrorString)

 ENDIF

ENDIF

RETURN self

* --------------

INLINE METHOD Execute(cAlias)

LOCAL rc := 0x0, nCursor := 0x0, cErrorString, nErrorLen, nError

::LastError := AdsExecuteSQLDirect(::HANDLE , ::Statement , @nCursor)

IF ::LastError > 0

15

 cErrorString := _AdsGetLastError()

 MsgBox(cErrorString)

 RETURN ‘’

ENDIF

DbUseArea(,::Session, “<CURSOR>”+L2Bin(nCursor)+”</CURSOR>”,cAlias)

IF (Used())

 ::Alias := Alias()

 ::Cursor := L2Bin(nCursor)

ENDIF

RETURN (::Alias)

ENDCLASS

* --------------

FUNCTION _AdsGetLastError()

LOCAL cErrorString, nErrorLen, nError

cErrorString := Space(500)

nErrorLen := 500

nError := 0

AdsGetLastError(@nError,@cErrorString,@nErrorLen)

cErrorString := Strtran(Pad(cErrorString,nErrorLen),’;’,Chr(13))

RETURN cErrorString

The ExecuteSQL() and ApplySQLParams() functions
ExecuteSQL() is a function that is used to execute any SQL statement, however it should be used only for statements

that do not return a dataset but instead perform data operations that make updates to data tables, such as updating
structures, global replaces, etc. ExecuteSQL() can be used to execute statements embedded in code or to execute *.SQL
files.

ApplySQLParams() is a function that is used to pass parameters into the SQL statement.

FUNCTION ExecuteSQL(cStatement, cStatus)

LOCAL nIndexMode := ADS_CDX, nHandle, nStatementHandle, nVerify, ;

 nLockingMode := ADS_PROPRIETARY, nCursorHandle

oSession := AdsSession()

nHandle := oSession:getConnectionHandle()

nStatementHandle := 0

AdsCreateSQLStatement(nHandle, @nStatementHandle)

AdsStmtSetTableType(nStatementHandle, nIndexMode)

16

AdsStmtSetTableLockType(nStatementHandle, nLockingMode)

nVerify := AdsVerifySQL(nStatementHandle, cSelect)

IF nVerify > 0

 cStatus := _AdsGetLastError()

 RETURN .f.

ENDIF

nCursorHandle := 0

AdsExecuteSQLDirect(nStatementHandle, cSelect, @nCursorHandle)

IF nCursorHandle = 0

 cStatus := _AdsGetLastError()

 RETURN .f.

ENDIF

RETURN .t.

* -----------

FUNCTION ApplySQLParams(cSqlStatement, aParams)

LOCAL i, cValue, cDate, xValue, nError

FOR i := 1 TO Len(aParams)

 IF aParams[i] == NIL

 LOOP

 ENDIF

 xValue := aParams[i]

 IF Valtype(xValue) == ‘N’

 cValue := Alltrim(Str(xValue))

 ELSEIF Valtype(xValue) == ‘L’

 IF xValue

 cValue := ‘TRUE’

 ELSE

 cValue := ‘FALSE’

 ENDIF

 ELSEIF Valtype(xValue) == ‘D’

 cDate := DtoS(xValue)

 cDate := Ltrim(Rtrim(SubStr(cDate,1,4) + ‘-’ + ;

 SubStr(cDate,5,2) + ‘-’ + ;

 SubStr(cDate,7,2)))

 cValue := “{ d ‘” + cDate + “’}”

 ELSEIF Valtype(xValue) == ‘C’

 cValue := “’” + xValue + “’”

 ELSE

 cValue := Trim(DC_XtoC(xValue))

 ENDIF

 cSqlStatement := StrTran(cSqlStatement,’?’,cValue,,1)

NEXT

RETURN cSqlStatement

17

Using ExecuteSQL() to Modify a Database structure
Here is an example of a SQL file that is used to add a new field named RECORD_ID to all databases.

/* Record_ID.SQL */

ALTER TABLE APERAKT ADD COLUMN RECORD_ID Char(20) ;

ALTER TABLE ARDUMP ADD COLUMN RECORD_ID Char(20) ;

ALTER TABLE AUTODATA ADD COLUMN RECORD_ID Char(20) ;

ALTER TABLE AUTOS ADD COLUMN RECORD_ID Char(20) ;

ALTER TABLE BINLABEL ADD COLUMN RECORD_ID Char(20) ;

ALTER TABLE BLDPOOL ADD COLUMN RECORD_ID Char(20) ;

ALTER TABLE CAN_JOB ADD COLUMN RECORD_ID Char(20) ;

.... 80 more tables

And here is the code that will execute this SQL file and modify the structure of every database in the data dictionary.

cSql := MemoRead(‘Record_Id.SQL’)

cStatus := ExecuteSQL(cSql)

? cStatus

Using ExecuteSQL() to change Account numbers
Imagine a scenario in which your customer asked you to write a routine that would change all customer account

numbers to the customer phone number. This is a common requirement in modern applications and using SQL is
the most effectively way to accomplish this task in a reasonable time-frame. The ripple effect of changing customer
account numbers on 100,000 plus customers could be enormous in large applications and could take hours of
programming plus hours more to run and test the code. This is because every relational database with a customer
account number also needed to be changed to maintain relational integrity. In legacy applications, it is possible that
many databases containing millions of records would be affected by this change. Here is an example of how this
would be done using SQL:

First, we add a new field to ACCTS.DBF to store the old account number.

TEXT INTO cStatement

ALTER TABLE ACCTS ADD COLUMN OLD_ACCT Char(10)

ENDTEXT

ExecuteSQL(cStatement)

Next, we create a file named ACCTNO-UPDATE.SQL that contains the following SQL code:
BEGIN TRANSACTION ;

UPDATE ACCTS SET old_acct = ‘%1’ WHERE acct_no = ‘%1’ ;

UPDATE ACCTS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE ACCTCROS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE AUTOS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE BLDPOOL SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE CJPARTS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE CORES SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE CUSTDUMP SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE DELRO1 SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE DELROP SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE DEPOSITS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE GPTAGSPD SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE LEADS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE LOSTSALE SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE MAILIN SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

18

UPDATE MAILLST SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE RO SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE RMA SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE RMAPARTS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE ORDERS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE PREMO SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE PT SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE PTPARTS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE RECOMREP SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE ROPARTS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE SALESTAX SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE TLCLIENT SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE TRANSM SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE WARRANTY SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE COREBANK SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE MO SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE TRANYOYO SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE SHIPMAST SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE SHIPACCT SET cust_acct = ‘%1’ WHERE cust_acct = ‘%2’ ;

UPDATE CONTACTS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

UPDATE CLAIMS SET acct_no = ‘%1’ WHERE acct_no = ‘%2’ ;

COMMIT WORK

Finally, we created a routine that steps through every record in ACCTS.DBF and executes the above code as follows:
cSQL := MemoRead(‘ACCTNO-UPDATE.SQL’)

USE ACCTS

nExceptions := 0

nUpdated := 0

DO WHILE !ACCTS->(Eof())

 cOldAcctNo := ACCTS->acct_no

 cNewAcctNo := Strtran(ACCTS->phone_no,’-’,’’)

 cSQLUpdate := Strtran(cSQL, ‘%1’, cNewAcctno)

 cSQLUpdate := Strtran(cSQLUpdate, ‘%2’, cOldAcctNo)

 ? ‘Updating ‘ + cOldAcctNo + ‘ to ‘ + cNewAcctNo

 IF Empty(cNewAcctNo)

 Exception(‘ACCTNO_UPDATE_PHONE’, cOldAcctNo, cNewAcctNo,,, ;

 ‘Phone Number is Empty’)

 nExceptions++

 ELSEIF cNewAcctNo == cOldAcctNo

 // do nothing

 ELSEIF Len(cNewAcctNo) # 10

 Exception(‘ACCTNO_UPDATE_PHONE’, cOldAcctNo, cNewAcctNo,,, ;

 ‘Phone Number is not 10 digits’)

 nExceptions++

 ELSEIF ACCTS->(dbSeek(Pad(cNewAcctNo,10)))

 Exception(‘ACCTNO_UPDATE_PHONE’, cOldAcctNo, cNewAcctNo,,, ;

 ‘Account Number Already Exists’)

 nExceptions++

 ELSEIF !ExecuteSQL(cSQLUpdate, @cStatus)

 Exception(‘ACCTNO_UPDATE_PHONE’, cOldAcctNo, cNewAcctNo,,, ;

19

 cStatus)

 nExceptions++

 ELSE

 nUpdated++

 ENDIF

 ExecuteSQL(cSQLUpdate)

 ACCTS->(dbSkip())

ENDDO

ACCTS->(dbCloseArea())

? ‘Accounts Updated = ‘, nUpdated

? ‘Exceptions = ‘, nExceptions, ‘Look at the EXCEPTION table’

Using ExecuteSQL() to add a new record to a database
It is suggested that a database be used for log exceptions. Appending a record using SQL requires no record locking.

Here we use ExecuteSQL() and ApplySQLParams():
FUNCTION Exception(cType, cRef1, cRef2, cRef3, cRef4, cErrorInfo)

LOCAL cStatement, aParams, cStatus

DEFAULT cType := ‘UNKNOWN’, ;

 cRef1 := ‘’, ;

 cRef2 := ‘’, ;

 cRef3 := ‘’, ;

 cRef4 := ‘’, ;

 cErrorInfo := ‘’

cRef1 := Strtran(cRef1,”’”,’’)

cRef2 := Strtran(cRef2,”’”,’’)

cRef3 := Strtran(cRef3,”’”,’’)

cRef4 := Strtran(cRef4,”’”,’’)

cErrorInfo := Strtran(cErrorInfo,”’”,”’’”)

TEXT INTO cStatement WRAP

INSERT INTO EXCEPTION (type, ref1, ref2, ref3, ref4, errorinfo, date, time)

 VALUES (?, ?, ?, ?, ?, ?, ?, ?) ;

ENDTEXT

aParams := { cType, cRef1, cRef2, cRef3, cRef4, cErrorInfo, Date(), Time() }

cStatement := ApplySQLParams(cStatement, aParams)

ExecuteSQL(cStatement, @cStatus)

RETURN nil

Using SQL files instead of Code
*.SQL files contain SQL commands that can be executed with the ExecuteSQL() function as follows:
cSQL := MemoRead(‘UPDATE.SQL’)

ExecuteSQl(cSQL)

20

Many times it is much more convenient, many times more powerful and also much faster to write SQL code than
to try to accomplish the same task in Xbase++ code. In legacy applications it is often required to provide a more
“normalized” solution rather than using a single database. In the below example, the master parts file (PARTS) has
fields for Department OnHand quantities which need to be placed into a new child database (PARTDEPT). This involves
creating a new table named PARTDEPT, adding new index tags to PARTDEPT, transferring the data from the PARTS
table to PARTDEPT, then modifying the structure of PARTS by deleting and adding fields, then deleting the unused
index tags in PARTS.

Here is the SQL file that will accomplish this task: /* PARTDEPT-CREATE.SQL

This script creates a new child table named PARTDEPT and transfers values in the following fields from PARTS to
PARTDEPT:
 onhand -> onhand

 minlim -> minlim

 maxlim -> maxlim

 cost -> cost // renamed this field in PARTS.DBF to std_cost

 onhand_xxx -> onhand

 minlim_xxx -> minlim

 maxlim_xxx -> maxlim

 cost_xxx -> cost

 renamed bin to std_bin */

CREATE TABLE PARTDEPT (

 PART_NO Char(20),

 VENDOR Char(4),

 DEPT_NO Numeric(3, 0),

 ONHAND Numeric(6 ,0),

 MINLIM Numeric(6 ,0),

 MAXLIM Numeric(6 ,0),

 COST Numeric(11 ,3),

 BIN Char(10),

 LSTYR_USED Numeric(7, 0),

 YTD_USED Numeric(7, 0)) ;

EXECUTE PROCEDURE sp_CreateIndex(

 ‘PARTDEPT’,

 ‘PARTDEPT.cdx’,

 ‘PART_NO’,

 ‘PART_NO+VENDOR+Str(DEPT_NO,3)’,

 ‘’,

 2,

 512);

EXECUTE PROCEDURE sp_CreateIndex(

 ‘PARTDEPT’,

 ‘PARTDEPT.cdx’,

 ‘DEPT’,

 ‘Str(DEPT_NO,3)+PART_NO+VENDOR’,

 ‘’,

 2,

 512);

21

EXECUTE PROCEDURE sp_CreateIndex(

 ‘PARTDEPT’,

 ‘PARTDEPT.cdx’,

 ‘BIN’,

 ‘Str(DEPT_NO,3)+BIN+PART_NO+VENDOR’,

 ‘’,

 2,

 512);

INSERT INTO PARTDEPT

(PART_NO,

 VENDOR,

 DEPT_NO,

 ONHAND,

 MINLIM,

 MAXLIM,

 COST,

 BIN)

SELECT

 PART_NO,

 VENDOR,

 0,

 ONHAND,

 MINLIMIT,

 MAXLIMIT,

 COST,

 BIN

FROM PARTS

WHERE ONHAND > 0 OR MINLIMIT > 0 OR MAXLIMIT > 0 OR BIN IS NOT NULL;

INSERT INTO PARTDEPT

(PART_NO,

 VENDOR,

 DEPT_NO,

 ONHAND,

 MINLIM,

 MAXLIM,

 COST)

SELECT

 PART_NO,

 VENDOR,

 1,

 ONHAND_001,

 MINLIM_001,

 MAXLIM_001,

 COST_001

FROM PARTS

WHERE ONHAND_001 > 0 OR MINLIM_001 > 0 OR MAXLIM_001 > 0 ;

/* Duplicate “INSERT” above for 002 thru 030 */

22

DROP INDEX parts.part_oh ;

DROP INDEX parts.part_bin ;

DROP INDEX parts.part_bin2 ;

DROP INDEX parts.part_bin3 ;

DROP INDEX parts.part_low ;

DROP INDEX parts.part_low2 ;

DROP INDEX parts.part_mxl ;

DROP INDEX parts.pct_low ;

DROP INDEX parts.pct_low2 ;

DROP INDEX parts.part_sld ;

ALTER TABLE PARTS

 ALTER COLUMN cost std_cost Numeric(9, 3)

 ALTER COLUMN bin std_bin Char(10)

 ADD COLUMN record_id Char(20)

 DROP ONHAND

 DROP ONHAND_001

 /* Duplicate “DROP” above for ONHAND_002 thru ONHAND_030 */

 DROP MINLIMIT

 DROP MINLIM_001

 /* Duplicate “DROP” above for MINLIM_002 thru MINLIM_030 */

 DROP MAXLIMIT

 DROP MAXLIM_001

 /* Duplicate “DROP” above for MAXLIM_002 thru MAXLIM_030 */

 DROP COST_001

 /* Duplicate “DROP” above for COST_002 thru COST_030 */

 DROP BIN2

 DROP BIN3

 DROP LASTYR

 DROP SOLD_YR_TD ;

Another advantage to using SQL code is that the code can be run inside the Advantage Architect. The application
does not need to be running to write and test the SQL routine. Once the routine is working as required, it can then be
called in the application with ExecuteSQL().

Converting existing Xbase++ applications
The ADSDBE is the simplest method for converting an existing application to Advantage Database Server and only

requires a few simple steps.

1.	 Locate the following Alaska Software Compile-time files and make sure they are in your INCLUDE path and LIB
path: ADSDBE.CH, ADSUTIL.LIB

2.	Locate the following Alaska Software Run-time files and make sure they are in your PATH: ADSDBE.DLL, ADSUTIL.
DLL.

3.	Locate the following Sybase Run-time files and makes sure they are in your PATH: ACE32.DLL, AXCWS32.DLL,
ADSLOC32.DLL.

4.	Locate DBESYS.PRG (modified). A ready-to-use version is available in Code Central on DevZone.
AdvantageDatabase.com. Add this file to your project file.

5.	If you are currently using CDX indexes in your application, nothing else needs to be done to DBESYS.PRG. If you
are currently using NTX indexes in your application, make the following change: #define INDEX_TYPE “NTX”.

23

6.	If you want ADS to open databases in compatible locking mode, nothing else needs to be done to DBESYS.PRG. If
you want ADS to open databases in proprietary locking mode, make the following change: #define COMPATIBLE
TRUE.

7.	 If your existing application is multi-threaded, you will need to add 1 line of code to the start of each thread:
AdsSession():setDefault(). AdsSession() is a Get-Set function located in DBESYS.PRG. It returns a pointer to the
session object. The setDefault() method insures that the current thread has access to the session object.

8.	Locate the following Sybase file: ADS.INI. This file is used to establish the kind of connection to make to
Advantage Database Server. Place this file in the same directory as your application .EXE. During testing, it is not
necessary to run the remote server. Instead, you can use local server. This can be changed in ADS.INI.

9.	Compile and run your application. All databases and indexes should now be opened with ADSDBE.

Sample Programs Available
The above steps are all that is needed for the most rudimentary conversion of an existing Xbase++ application to

a client/server application, however there are many more features of Advantage that can improve the performance,
functionality and reliability of an Xbase++ application.

A set of sample and utility programs are available in Code Central on DevZone.AdvantageDatabase.com. Some of
these programs use only the ADSDBE for access to Advantage and others use ADS wrappers to call ACE functions.
Read the README.TXT file for a complete description of the sample programs.

AdsClass++
AdsClass++ is provided by DS-Datasoft3. It includes code samples, a help file that provides good documentation and

the developer version is shipped with the source code.

AdsClass++ is an entirely object oriented solution based only on the Advantage Client Engine ACE32.DLL and the
unique ability of Xbase++ to declare classes dynamically at runtime.

These classes enable the usage of all ADS functions as
all table types: NTX,CDX,VFP,ADT, •	
all native ADS field types, •	
data dictionary, setting and configuration •	
rawkey indices, key expression concatenating different field types, •	
NULL values, •	
AOF filters,•	
easy SQL statement and cursor implementation, •	
ADS management, •	
high performance due to direct API communication, •	
all collations, and so on ...•	

The basic idea is to create a class for every table or SQL statement declaring ACCESS ASSIGN methods to read from
and write to table fields. All Xbase++ workarea commands and functions and all additional ADS specific functions
are mapped to class methods. A table is then represented only by this object and not by any workarea. There is no
difference between a table dataset and a SQL result set neither in syntax nor functionality.

The object capsulates all handling to this table or SQL. That way the same table can be opened several times in
different objects each separated from the others regarding navigation, filtering, indexing, scoping, etc. As AdsClass++
works with handles the same connection can be used in all threads. Another advantage with objects is that they are

3 DS-Datasoft GmbH&Co.KG, www.ds-datasoft.com

24

variables (specific data type, can be passed as parameters, visible in all threads, declaration, compiler warnings,…).
Working with objects rather than workareas is a quite innovative step as it makes it easier to read and maintain code
especially working in a team. This concept can be extended to map any Xbase++ DBE in equivalent classes.

Class overview:
dsAceSession, connect to free tables (NTX,CDX,VFP,ADT),•	
dsAceDD, connect to a data dictionary (ADD), access and configure meta information,•	
dsAceServer, class to access a table,•	
dsAceSqlServer, class for SQL statements,•	
and more (but would exceed this short presentation).•	

Examples connecting:
#include “ACEXBP.CH”

PROCEDURE DbeSys

// no need to load any DBE here

// ACE32.DLL is loaded by INIT PROCEDURE in xclace.dll

RETURN

PROCEDURE MAIN

LOCAL oAdsConnect

// free tables

oAdsConnect := dsAceSession():New()

oAdsConnect:connect(“\\ALASKA\VOL1”,.F.,;

 ADS_REMOTE_SERVER+ADS_LOCAL_SERVER)

// some settings

oAdsConnect:TableType := ADS_CDX // ADS_NTX, ADS_VFP, ADS_ADT

oAdsConnect:Chartype := ADS_OEM // ADS_ANSI

oAdsConnect:LockType := ADS_PROPRIETARY_LOCKING

 // ADS_COMPATIBLE_LOCKING

AdsSetDefault(<path>)

AdsSetSearchPath(<path1;path2;...>)

// or ADD

oAdsConnect := dsAceDD():New()

oAdsConnect:connect(“\\ALASKA\VOL1\MYSHARE\DEMO.ADD”,”ADSSYS”,;

 <password>, ADS_DEFAULT,;

 ADS_REMOTE_SERVER+ADS_LOCAL_SERVER)

//

IF !oAdsConnect:IsConnected()

 Msgbox(“Unable to establish connection to ADS: “+;

 var2char(AdsGetLastError())

 QUIT

ENDIF

// more settings

AdsCacheOpenCursor(<number>)

AdsCacheOpenTables(<number>)

oAdsConnect:CacheRecords(<number>)

// declare session for application wide access

25

AppDic(oAdsConnect)

...

// end of main

RETURN

// disconnect

EXIT PROCEDURE AdsDisconnect

 AppDic():disconnect()

RETURN

Examples working with tables (either free tables or data dictionary tables, any table type):
LOCAL dbTable

dbTable := AppDic():openServer(“customer.dbf”)

// some navigation

dbTable:goTop()

DO WHILE !dbTable:EOF()

 cName := dbTable:NAME // field access

 IF dbTable:RLock()

 dbTable:NAME := cName // field write

 dbTable:UnLock()

 ENDIF

 dbTable:Skip()

ENDDO

// rawkey index, key expression with different field types

// enhances performance with SQL execution significantly

// only ADT tables

dbTable:ordCreate(<cIndexname>,<cTagName>,;

 “stringFieldname;dateFieldname;numericFieldname”)

// pass different datatypes to seek according to indexkey

dbTable:Seek({“Smith”,date(),10.1})

// filter evaluated at client side, function call

dbTable:setFilter({|dbTable | myFilter(dbTable)})

// filter evaluated on server side

dbTable:setFilter(“name=’SMITH’”)

// AOF Filter, only evaluated on server side

dbTable:setAOF(“name=’SMITH’”)

// top and bottom Scope

dbTable:setScope(,”SMITH”)

dbTable:Close()

Examples using SQL:
LOCAL cSql

LOCAL dbSql

// simple select

TEXT INTO cSql WRAP

Select * from customer

26

where City like ‘B%’;

ENDTEXT

dbSql := OpenSqlServer(,cSql, AppDic())

// dbSql is, with no difference, treated like any table object

// including ordcreate on a cursor result set !

// see dbTable examples above

// SQL with parameters

sqlConnection := dsAceSqlServer():New(AppDic())

sqlConnection:prepare(“Select * from customer where City=:P1”)

sqlConnection:setparam(“P1”, “Boise”)

dbSql := sqlConnection:Execute2Server() // get result set

// set new parameter and refresh result

sqlConnection:setparam(“P1”, “San Francisco”)

dbSql:RefreshSql() // new result set

dbSql:close()

sqlConnection:close()

// data manipulation

ExecuteSql(AppDic(),”Update customer set flag=true where ...”)

Examples using data dictionary:
LOCAL aUser // { computername, login name, ip-adress, ... }

// get array with all connected users

aUser := GetUsernames(AppDic())

// get user with record lock

aUser := GetAdsLockOwner(<cFile>, <nRecno>)

// create new user

AppDic():CreateUser([<cGroup>], <cUser>, <password>)

// disconnect user

AdsKillUser(<cUser>)

Examples editing and browsing:
LOCAL dbTable

dbTable // browsing

::oBrowse := XbpBrowse():new(::drawingarea,,{0,0},::currentsize())

::oBrowse:create()

// new column

::oBrowse:addColumn({|x| iif(x==NIL, dbTable:NAME,;

 dbTable:NAME := x)})

27

// navigation codeblock

::oBrowse:skipBlock := {|n| DbSkipper(n, dbTable)}

::oBrowse:goTopBlock := {|| dbTable:GoTop()}

::oBrowse:goBottomBlock := {|| dbTable:GoBottom()}

::oBrowse:phyPosBlock := {|| dbTable:Recno()}

// codeblock for vertical scrollbar.

::oBrowse:posBlock := {|| dbTable:Position()*10}

::oBrowse:goPosBlock := {|n| dbTable:GoPosition(n/10)}

::oBrowse:lastPosBlock := {|| 1000}

::oBrowse:firstPosBlock := {|| 0}

//===

FUNCTION DbSkipper(nWantSkip, dbTable)

LOCAL nDidSkip := 0

DO CASE

CASE dbTable:LastRec() == 0 // empty table

CASE nWantSkip == 0 // reread record

 dbTable:Skip(0)

CASE nWantSkip > 0 .AND. !dbTable:Eof()

 // skip next

 DO WHILE nDidSkip < nWantSkip

 dbTable:Skip(1)

 IF dbTable:Eof()

 // ghost record, append mode

 EXIT

 ENDIF

 nDidSkip++

 ENDDO

CASE nWantSkip < 0

 // skip back

 DO WHILE nDidSkip > nWantSkip

 dbTable:Skip(-1)

 IF dbTable:Bof()

 EXIT

 ENDIF

 nDidSkip--

 ENDDO

ENDCASE

RETURN nDidSkip

Example converting Xbase++ workarea code to AdsClass++:
// Existing workarea code:

LOCAL aOrder:={}

USE customer alias cust

SET INDEX TO custno, custname

28

USE order ALIAS order

SET INDEX TO ordno, custno

SELECT cust

SEEK “123”

SELECT order

SET ORDER TO custno

SEEK “123”

DO WHILE ! EOF() .AND. field->custno == “123”

 aadd(aOrder, recno())

 SKIP

ENDDO	

USE

SELECT cust

USE

// Converted to AdsClass++ code:

LOCAL dbCust, dbOrder

LOCAL aOrder:={}

dbCust := AppDic():OpenServer(“customer”)

dbOrder := AppDic():OpenServer(“order”)

dbCust:seek(“123”)

dbOrder:ordSetFocus(“custno”)

dbOrder:seek(“123”)

DO WHILE ! dbOrder:eof() .AND. dbOrder:custno == “123”

 aadd(aOrder, dbOrder:recno())

 dbOrder:skip()

ENDDO	

dbOrder:close()

dbCust:Close()

These examples are a short introduction of AdsClass++. To learn more about details or to test the performance
simple download a fully functional evaluation version from www.ds datasoft.com . Combining AdsClass++ with
XClass++ for the GUI will also speed up new application development. Due to support of rawkey indices it enables
easy migration from DBF to ADT resulting in a significant performance boost.

Additional Items
The Advantage Architect

The Advantage Data Architect (ARC) is a valuable resource for maintaining a data dictionary and also for testing
SQL SELECT statements and other SQL operations. There are sufficient Ads*() functions in ACE32.DLL to write the
Advantage Data Architect entirely in Xbase++ code, and this may be a useful exercise to learn more about ADS, but it
is entirely unnecessary because the Advantage Data Architect provides all necessary functionality.

www.AdvantageDatabase.com

Sybase, Inc.
Worldwide Headquarters
One Sybase Drive
Dublin, CA 94568-7902
U.S.A
1 800 8 SYBASE

Copyright © 2011 Sybase, an SAP Company. All rights reserved. Unpublished rights reserved under U.S. copyright laws. Sybase,
the Sybase logo, and Advantage Database Server are trademarks of Sybase, Inc. or its subsidiaries. ® indicates registration in the
United States of America. SAP and the SAP logo are the trademarks or registered trademarks of SAP AG in Germany and in several
other countries. All other trademarks are the property of their respective owners. 01/11

ARC can be used for SQL operations, modifying the data-dictionary, modifying the structure of databases and
indexes, browsing/editing data tables, setting permissions, etc. It is important to use this resource when converting
an Xbase++ application to run from a data dictionary. ARC can be downloaded for free form the Advantage Developer
Zone (DevZone.AdvantageDatabase.com)

Accessing Application Data from Third-Party Apps
A significant advantage to using a data dictionary in your application is the way it opens up your application data

to other third party applications, such as ASP.NET, Crystal Reports, Visio, Excel, etc.

When the Advantage ODBC driver is installed, third-party applications that support ODBC will see your application
data as an ODBC data source.

Conclusion
Xbase++ legacy applications can be given new life by utilizing inexpensive resources available in the ADSDBE from

Alaska Software and Advantage Database Server from Sybase. Advantage provides the performance and reliability
of client/server technology and the ability to apply the most advanced features of SQL without any redesign of an
existing application. Legacy code can be maintained and supported even while adding new features like transaction
processing, SQL queries, data replication and data encryption. Legacy databases can be queried and updated using
the most advanced SQL techniques or the more familiar ISAM techniques thereby providing a bridge to the future of
application development.

About the Author
Roger Donnay is an Idaho-based developer and consultant who specializes in database application development,

training, and consulting in the Xbase++ language. He is the author of eXpress++, the #1 selling Xbase++ add-
on library designed to improve programmer productivity. He developed award winning products for the Clipper
language and specializes in helping application developers in migrating their Clipper applications to Xbase++.

Roger has been a speaker at conferences in the U.S., Europe, Asia, South Africa and Australia.

Contact Information
Roger Donnay
Donnay Software Designs
1486 S. Logger’s Pond Place #11
Boise, ID 83706
208-344-0108
208-867-6091 Mobile
email: rogerdonnay@donnay-software.com
home page: http://www.donnay-software.com
support forum: http://bb.donnay-software.com:8080/phpBB3

